

Universidade de Lisboa Instituto Superior de Economia e Gestão Msc in Economics and Mathematical Finance

$\frac{\text{Probability Theory and Stochastic Processes}}{1 \text{st Semester - } 2025/2026}$

Regular	Assessment -	16th of	December	2025

Regular Assessment - 10th of December 2025
Duration: $(120 + \varepsilon)$ minutes, $ \varepsilon \leq 30$
Version A
Name:
Student ID #:
Part I
 Complete the following sentences in order to obtain true propositions. The items are independent from each other. There is no need to justify your answers.
(a) (b) In $\Omega = \{i, s, e, g\}$, consider the set $I = \{\{i\}, \{s\}, \{e\}, \{g\}\}\} \subset \mathcal{P}(\Omega)$. If $\mathcal{A}(I)$ is the smallest algebra containing I , then
$\#\mathcal{A}(I)=$
(b) (6) Consider the set \mathbb{R} endowed with the σ -algebra of the Borelians

(b) (6) Consider the set ℝ endowed with the σ-algebra of the Borelians.
The set {5} is a Borel set because it can be seen as a countable intersection of borelian sets. Indeed,

$$\{5\} = \bigcap_{n=1}^{\infty}].....$$

(c) (8) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ where $\mathcal{B}(\mathbb{R})$ denotes the σ -algebra of the Borelians and μ is the **counting** measure. For each $n \in \mathbb{N}$, consider the sets

$$A_n = \{n, n+1, n+2, ...\}$$
 and $A = \bigcap_{n=1}^{+\infty} A_n$.

For this specific case, we have

$$\dots = \mu(A) \neq \lim_{n \to +\infty} \mu(A_n) = \dots$$

The inequality does not contradict the **continuity property** because

(d) (8) Consider the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ where $\mathcal{B}(\mathbb{R})$ denotes the σ -algebra of the Borelians of \mathbb{R} . The letters m, δ_a and μ denote the **Lebesgue**, the **Dirac** centered at $a \in \mathbb{R}$ and the **counting** measure, respectively. With respect to the sets

$$A = \begin{bmatrix} \frac{1}{4}, 2 \end{bmatrix}$$
 and $B = [0, 1] \cap \mathbb{Q}^c$

we may say that:

1.
$$m(B) = \dots$$

2.
$$\sum_{n=1}^{\infty} \delta_{\frac{1}{n}}(A) = \dots$$

- 3. $\mu(B \cap C) = 1$. Then, one possibility for C is
- 4. The set $A \cap \mathcal{V}$ is **non-measurable**. Then, one possibility for \mathcal{V} is the set.
- (e) (4) With respect to the map $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2 4$, the **graphical** representation of f^- is:

(f) (14) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$ where $\mathcal{B}(\mathbb{R})$ denotes the σ -algebra of the Borelians of \mathbb{R} and m is the Lebesgue measure. Let $f: [0,1] \to \mathbb{R}$ be:

$$f(x) = \begin{cases} 3x & \text{if } x < 1/2 \\ 3 - 3x & \text{if } x \ge 1/2 \end{cases}.$$

For each $n \in \mathbb{N}$, consider the set $(f^m = f \circ \cdots \circ f \text{ refers to the composition of maps})$

$$\Lambda_n = \{ x \in [0, 1] : f^m(x) \in [0, 1], \forall m \in \{1,, n\} \}.$$

Then:

- 1. the fixed points of f are and (elements $x_0 \in \mathbb{R}$ such that $f(x_0) = x_0$)
- 2. $\Lambda_2 = \dots$
- 3. the set Λ_n is the union of closed subintervals of [0,1].
- 4. $m(\Lambda_n) = \dots$
- 5. the set $\Lambda = \bigcap_{n \in \mathbb{N}} \Lambda_n$ is usually called byset and $m(\Lambda) = \dots$
- 6. With respect to the **cardinality** of Λ , it is
- (g) (4) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$ where $\mathcal{B}(\mathbb{R})$ denotes the σ -algebra of the Borelians of \mathbb{R} and m is the Lebesgue measure. For $a, b \in \mathbb{R}$ with a < b, the **induced measure** induced by the **linear** map $f : \mathbb{R} \to \mathbb{R}$ is given by:

$$m\circ f^{-1}(]a,b])=\frac{b-a}{5}$$

The analytical expression of f is $f(x) = \dots$

(h) (4) Consider the measure space $(\Omega, \mathcal{F}, \mu)$ where Ω is a finite set, \mathcal{F} is an algebra and μ is the **counting** measure. If $A = \{a_1, a_2\} \in \mathcal{F}$ and $f : \Omega \to \mathbb{R}$ is an integrable map, then:

$$\int_A f \, \mathrm{d}\mu = \dots$$

(i) (6) For each $n \in \mathbb{N}$, define the sequence of simple maps $\varphi_n \equiv \chi_{[n,n+1]} : \mathbb{R}_0^+ \to \mathbb{R}_0^+$. In this case, we have:

$$\dots = \int_{[1,+\infty[} \lim_{n \to +\infty} \varphi_n \, \mathrm{dm} \neq \lim_{n \to +\infty} \int_{[1,+\infty[} \varphi_n \, \mathrm{dm} = \dots$$

This does not contradict the Monotone Convergence Theorem because

.....

(j) (10) Consider the measure space $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2), m \times m)$ where $\mathcal{B}(\mathbb{R}^2)$ denotes the σ -algebra of the Borelians of \mathbb{R}^2 and m is the Lebesgue measure on \mathbb{R} . Consider the map $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2} & \text{if } 0 < x^2 + y^2 \le 1\\ 0 & \text{otherwise} \end{cases}.$$

Using the change of coordinates $x = r \cos \theta$ and $y = r \sin \theta$, $r \in]0,1]$ and $\theta \in [0,2\pi]$, we may conclude that:

- 2. $\int_0^{2\pi} \int_0^1 |f(r,\theta)| \times J(r,\theta) \, dr \, d\theta = \dots$ (write explicitly the integrals), which diverges¹.

 $[\]overline{J}(r,\theta)$ denotes the Jacobian of the change of variables $(r,\theta)\mapsto (x,y)$.

(k) (10) Consider the probability space $\Omega = [0,1]$ endowed with the σ -algebra of borelians $\mathcal{B}([0,1])$. Define the measure

$$\mu = \frac{2}{3}\delta_0 + \frac{1}{3}m,$$

where δ_0 is the **Dirac** measure centered at 0 and m is the **Lebesgue** measure in [0,1]. Then:

- 1. $\mu(\left[0,\frac{1}{3}\right]) = \dots$
- 2. The measures δ_0 and m are with respect to μ .
- 3.theorem says that there exists a map f (integrable) such that

$$\delta_0(A) = \int_A f \, \mathrm{d}\mu$$

- 4. Using the notation of the previous item, we have $f(0) = \frac{d\delta_0}{d\mu}(0) = \dots$
- (l) (9) Consider the mensurable space $(\mathbb{R}, \mathcal{F})$ where \mathcal{F} is a σ -algebra, and

$$X: \mathbb{R} \to \mathbb{N} \cup \{0\}$$

is a random variable. Let F be the **discrete** distribution function associated to $P \circ X^{-1}$ such that for $k \in \mathbb{N} \cup \{0\}$, we have:

$$P(\{\omega \in \Omega : X(\omega) = k\}) = \frac{5^k}{k!e^5}.$$

Let $D = \{a_k\}_{k \in \mathbb{N} \cup \{0\}}$ be the set of **discontinuities** of F ordered by the relation <. Then:

- 1. $\sum_{n=1}^{+\infty} P \circ X^{-1}(\{a_n\}) = \dots$
- 2. The **characteristic function** associated to X is given by

$$\Phi_X(t) = \dots$$

3. If E(X) = 5 and Var(X) = 5, then the **Taylor expansion** of Φ_X of degree 2 at t = 0 is:

$$P(t) = \dots + t + \dots t^2$$

- (m) (6) The **Devil's staircase** continuous map is an example of a distribution map $F: \mathbb{R} \to \mathbb{R}$ such that F is not....... with respect to the Lebesgue measure. The set of points $x \in [0,1]$ for which F'(x) = 0 has Lebesgue measure equal to
- (n) (6) Consider the mensurable space ([0,1], \mathcal{F} , P) where \mathcal{F} is a σ -algebra and P is a probability measure. Let $X : [0,1] \to [0,1]$ be a random variable and $\mathcal{G} \subset \mathcal{F}$. Then:
 - 1. the σ -algebra **generated by** X is:

$$\sigma(X) = \{\dots : B \in \mathcal{F}\}$$

2. we say that $\sigma(X)$ and \mathcal{G} are if and only if

$$P(A \cap B) = P(A)P(B)$$

for all $A \in \sigma(X)$ and $B \in \mathcal{G}$. In this case, $E(X|\mathcal{G}) = \dots$

(o) (9) Consider the following homogeneous Markov chain defined on the state space $\{1,2\}$ with transition probability matrix:

$$\mathbf{T} = \left[\begin{array}{cc} 1/3 & 2/3 \\ 1/5 & 4/5 \end{array} \right]$$

Then:

- 3. The **mean recurrence time** associated to 1 and 2 are equal to and, respectively.

Part II

- Give your answers in exact form.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solve a problem, you may get little or no credit for it, even if your answer is correct.
- 1. Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ where $\mathcal{B}(\mathbb{R})$ denotes the σ -algebra of the Borelians and μ is a measure. Suppose that $f : \mathbb{R} \to \mathbb{R}_0^+$ is an integrable map and let $\lambda \in \mathbb{R}^+$. Define the set $A = \{x \in \mathbb{R} : f(x) \geq \lambda\}$. Prove that

$$\mu(A) \le \frac{1}{\lambda} \int f(x) \, \mathrm{d}\mu(x).$$

2. Consider $(f_n)_{n\in\mathbb{N}}$ the sequence of continuous maps

$$f_n(x) = ne^{-x^3} \sin\left(\frac{x^2}{n}\right), \quad x \in \mathbb{R}_0^+$$

- (a) Identify the map $f: \mathbb{R}_0^+ \to \mathbb{R}$ such that $\lim_{n \to +\infty} f_n(x) = f(x)$.
- (b) Show that $|f_n(x)| \leq x^2 e^{-x^3}$, for all $n \in \mathbb{N}$ and $x \in \mathbb{R}_0^+$ (**Remark:** you can use, without proof, that $|\sin(x)| \leq |x|$, for all $x \in \mathbb{R}$)
- (c) Compute $\lim_{n\to+\infty}\int_{[0,+\infty[}f_n(x)\,\mathrm{dm}(x)$, where m is the usual Lebesgue measure.
- 3. Let $X: \Omega \to \mathbb{R}$ be a random variable on a probability space (Ω, \mathcal{F}, P) with distribution function

$$F(X) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{x^2}{4} & \text{if } 0 \le x < 2 \\ 1 & \text{if } x \ge 2 \end{cases}$$

7

If $Z = \sqrt{X}$, compute the **distribution function** of Z.

4. Let $([0,1[,\mathcal{B}([0,1[),m)$ be a space of probability, where m is the Lebesgue measure in the interval $[0,1[,X,Y:[0,1[\to\mathbb{R}$ are random variables given by $X(\omega)=2\omega^2$ and

$$Y(\omega) = \begin{cases} 2\omega & \text{if } 0 \le \omega < 1/2 \\ 2\omega - 1 & \text{if } 1/2 \le \omega < 1 \end{cases}.$$

Describe the sets of $\sigma(Y)$ and compute E(X|Y).

5. Given a sequence $(X_n)_n$ of independent and identically distributed random variables with **uniform distribution** on [0,1], compute

$$\lim_{n\to+\infty} \sqrt[n]{X_1\cdots X_n}.$$

Hint: if necessary, use the change of variables $Y_n = \ln(X_n)$.

DO NOT DO THIS! :)

Credits:

I	II.1	II.2(a)	II.2(b)	II.2(c)	II.3	II.4	II.5
110	15	10	5	15	15	15	15